On the Use of Non - Stationary Penalty Functions to SolveNonlinear Constrained Optimization Problems with GA ' sJe rey
نویسنده
چکیده
In this paper we discuss the use of non-stationary penalty functions to solve general nonlinear programming problems (NP) using real-valued GAs. The non-stationary penalty is a function of the generation number; as the number of generations increases so does the penalty. Therefore, as the penalty increases it puts more and more selective pressure on the GA to nd a feasible solution. The ideas presented in this paper come from two basic areas: calculus-based nonlinear programming and simulated annealing. The non-stationary penalty methods are tested on four NP test cases and the eeectiveness of these methods are reported..
منابع مشابه
On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GA's
In this paper we discuss the use of non-stationary penalty functions to solve general nonlinear programming problems (NP) using real-valued GAS. The non-stationary penalty is a function of the generation number; as the number of generations increases so does the penalty. Therefore, as the penalty increases it puts more and more selective pressure on the GA to find a feasible solution. The ideas...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملPenalty Methods for a Class of Non-Lipschitz Optimization Problems
We consider a class of constrained optimization problems with a possibly nonconvex non-Lipschitz objective and a convex feasible set being the intersection of a polyhedron and a possibly degenerate ellipsoid. Such problems have a wide range of applications in data science, where the objective is used for inducing sparsity in the solutions while the constraint set models the noise tolerance and ...
متن کامل